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QUANTUM MECHANICS 

Quantum Mechanics is a branch of mechanics that deals with the mathematical description of the 

motion and interaction of subatomic particles. It incorporates the concepts of quantization of 

energy, wave–particle duality and the uncertainty principle. 

Matter Waves 

In 1924, Louis de Broglie proposed that just like radiation, particles also have wave-particle dual 

nature .Waves associated with a particle in motion are called de Broglie waves.  

In case of photons of frequency𝜐 , energy can be expressed as  

𝐸 = ℎ𝜐 = ℎ
𝑐 

𝜆
                  (wave nature) 

𝐸 = 𝑚𝑐2                          (Particle nature) 

𝑚𝑐2 = ℎ
𝑐

𝜆
                     (wave- particle dual nature)  

𝑚𝑐 =
ℎ

𝜆
  

𝜆 =
ℎ

𝑝
 

de Broglie suggested that this equation can be applied to any moving particle to find the 

wavelength of the matter wave. In general, for a particle of mass ‘m’ and velocity ‘v’, the 

associated matter wave is of wavelength 

𝜆 =
ℎ

𝑝
=

ℎ

𝑚𝑣
 

For an electron accelerated through a potential ‘V’, the associated matter wave is of 
wavelength 

𝜆 =
ℎ

𝑝
=

ℎ

√2𝑚𝐾𝐸
=

ℎ

√2𝑚 𝑒𝑉
 

Substituting the values , 

𝜆 = √
150

𝑉
    Å 

Heisenberg’s Uncertainty Principle 

The Heisenberg’s uncertainty principle states that it is not possible to know the position and 
the momentum of a particle simultaneously with precision. In other words, the product of 
uncertainty in position (∆x) and uncertainty in momentum (∆p) is greater than or equal to 
h/4π, 

                                            ∆p ∆x ≥ℏ/2 

Similar relations can be written for tother pairs of canonical variables like angle & angular 
momentum and energy & time. 

                                    ∆E ∆t ≥ ℏ/2 

where ∆E and ∆t are the uncertainties in determining energy and time, respectively and                                       

∆J ∆θ≥ ℏ/2 

∆J and ∆θ are the uncertainties in the measurement of angular momentum and angle, 
respectively. 
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Applications of uncertainty principle 
The uncertainty principle can be used ti explain many atomic phenomena. Two of them are 
explained below. 

1. Absence of  Electron inside nucleus 

Radii of typical nuclei are of the order of 10-14m.For an electron confined inside the nucleus, 

position may not exceed this limit and so the uncertainty in position is  Δx= 10-14m. 

corresponding uncertainty in momentum is  

𝛥𝑝 =
ℏ

𝛥𝑥
=

1.054𝑥10−34

10−14
= 1.1𝑥10−20𝑘𝑔𝑚𝑠−1 

If this is the uncertainty in momentum of electron, the momentum itself is of the order of 

this magnitude. 

Momentum of electron is p ≈ 1.1x10−20kgms−1 

Neglecting rest mass energy, kinetic energy of the electron  is 

 T = pc = 1.1x10−20kgms−1x3x108ms−1 

T= 3.3x10−12J 

T =
3.3 x10−12

1.6 x10−19
 eV 

=20 MeV 

So an electron requires 20MeV energy to stay inside nucleus. But experiments shows that 

electrons associated with even the unstable atoms never have more than fraction of this 

energy. Hence, we can conclude that electron cannot be present inside nucleus. 

2. Uncertainty in frequency of light emitted by an atom/Natural Line Broadening 

Typical lifetime in an excited stat of an atom is 10-8s. So the uncertainty of de-excitation is 
Δt=10-8s. The corresponding uncertainty in energy is  

∆E ≈
ℏ

∆t
 

 

∆E ≈
1.054 x10−34 Js

10−8 s
  ≈ 1.054 x10−26 J 

We have E = hν  where ν is the frequency of light 

ΔE = hΔν 

Hence uncertainty in f the frequency of light is 



3  robink@vjcet.org 
 

∆ν =
1.054 x10−26J

6.6 x10−34Js
 

= 1.6 x107Hz = 16 MHz 

This is the irreducible limit of accuracy with which we can determine the frequency of light emitted 

by an atom. That means the emitted spectral line is not sharp but has some width. This broadening 

of spectral line which cannot be reduced further is known as natural line broadening. 

Wave function (Ψ) 

In a wave there is something that varies periodically.  In case of electromagnetic waves, the 
electric and magnetic fields vary periodically, whereas in sound waves, pressure varies 
periodically. In water waves the height of water surface varies periodically.  Similarly in 
matter waves, a quantity that varies is called wave function, denoted by Ψ. It is a 
mathematical function in terms of position and time that represent state of a particle. 

Wave function Ψ is a complex quantity, which gives ‘the idea of the probability of finding the 
particle’ in a particular region of space. 

Properties / Physical Significance of Wave Function (Ψ) 

1. The wave function Ψ is complex quantity, so one cannot measure it. 

2. The wave function relates the particle nature and wave nature statistically. 

3. Square of the wave function  |ψ| 2 is a real quantity and gives the probability of finding a 
particle in region of space. 

Position probability density,        P = ∫|Ψ2| dτ 

Value of P is between 0 and 1. For ex; if P=0.4, it means there is a 40% chance for the presence 
of particle. 

4. It does not predict the exact location of the particle, but it says where the particle is likely 
to be. 

Normalization of Wave function 

A wave function, which satisfies equation∫|𝛹2| 𝑑𝜏 = 1 is said to be normalized to unity or 
simply normalized.  This means particle which exist in a particular region must be found 
somewhere in that region, i.e., the probability of finding the particle in that region will be 
100%, i.e., unity. 

Wave function of a particle with energy E and momentum p 

Consider a particle moving in x-direction with momentum ‘p’. The wave function of the 
particle can be written in the form 

Ψ = ae−i[ωt−kx]         ------------------------------------------------------------------------------------(1) 

where ‘a’ is the amplitude ,ω =
2π

T
 and k =

2π

λ
 

𝜔 =
2𝜋

𝑇
= 2𝜋𝜈 

𝜔 =
2𝜋ℎ𝜈

ℎ
=

2𝜋

ℎ
𝐸     
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𝜔 =
𝐸

ℏ
               --------------------------------------------------------------------------------------------(2) 

where E-energy of particle  and ℏ =
ℎ

2𝜋
  

We have 

𝑘 =
2𝜋

𝜆
     

Using de Broglie wave equation, 

𝑘 =
2𝜋𝑝

ℎ
=

𝑝

ℏ
          ----------------------------------------------------------------------------------------(3) 

Using eqn (2) and (3)in (1) 

𝛹 = 𝑎𝑒
−𝑖
ℏ

[𝐸𝑡−𝑝𝑥]
 

This is the wave function of a particle with energy E and momentum ‘p’. 

TIME-DEPENDENT SCHRÖDINGER EQUATION 

Consider a particle moving in x-direction with momentum ‘p’. Wave function of the particle 
is 

Ψ = ae
−i

ℏ
[Et−px]

       ------------------------------------------------------------------------------------(1) 

Differentiating (1) w.r.t. ‘t’ 

∂Ψ

∂t
=

−i

ℏ
Eae

−i
ℏ

[Et−px]
 

∂Ψ

∂t
=

−i

ℏ
EΨ 

EΨ = iℏ
∂Ψ

∂t
         --------------------------------------------------------------------------------------(2) 

Differentiating (1) w.r.t. ‘x’ twice 

𝜕𝛹

𝜕𝑥
=  

𝑖

ℏ
𝑝 𝑎𝑒

−𝑖
ℏ

[𝐸𝑡−𝑝𝑥]
 

∂2Ψ

∂x2
=

i

ℏ
p 

i

ℏ
p ae

−i
ℏ

[Et−px]
 

∂2Ψ

∂x2
=

−p2

ℏ2
Ψ 

p2Ψ = −ℏ2 ∂2Ψ

∂x2      -----------------------------------------------------------------------------------(3) 

Total energy of the particle is the sum of KE and PE 

E =
p2

2m
+ V 

Multiplying by ψ 

EΨ =
p2

2m
Ψ + VΨ  ----------------------------------------------------------------------------------(4) 

Using eqns (2) and (3)  in eqn(4) 
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iℏ
∂Ψ

∂t
=

−ℏ2

2m

∂2Ψ

∂x2
+ VΨ 

This is the time dependent Schrodinger equation in one dimension. In 3dimension, 

𝑖ℏ
𝜕𝛹

𝜕𝑡
=

−ℏ2

2𝑚
𝛻2𝛹 + 𝑉𝛹 

 where  𝛻2 is the Laplacian operator 

TIME INDEPENDENT SCHRÖDINGER EQUATION 

In many cases the potential (V) is independent of time and depends only on position. In such 
steady state /stationary  cases, the Schrodinger equation can be simplified by separating the 
time dependent and independent parts. 

Wave function of a particle moving in x-direction with momentum ‘p’ is 

Ψ = ae
−i
ℏ

[Et−px]
 

Ψ = ae
−i
ℏ

Et e
i
ℏ

px 

Ψ = Ψo e
−i

ℏ
Et    ----------------------------------------------------------------------------------------(1) 

where Ψo is a function that depend on position only 

Differentiating eqn (1) w.r.t. ‘t’ 

∂Ψ

∂t
=

−i

ℏ
EΨoe

−i

ℏ
Et  -----------------------------------------------------------------------------------(2) 

Differentiating eqn (1) w.r.t. ‘x’ twice 

∂2Ψ

∂x2 =
∂2Ψo

∂x2 e
−i

ℏ
Et------------------------------------------------------------------------------------(3) 

The time dependent Schrodinger equation is 

iℏ
∂Ψ

∂t
=

−ℏ2

2m

∂2Ψ

∂x2 + VΨ   -----------------------------------------------------------------------------(4) 

Using (1), (2) and (3) in (4) 

iℏ
−i

ℏ
EΨoe

−i
ℏ

Et =
−ℏ2

2m

∂2Ψo

∂x2
e

−i
ℏ

Et + VΨoe
−i
ℏ

Et 

EΨoe
−i
ℏ

Et =
−ℏ2

2m

∂2Ψo

∂x2
e

−i
ℏ

Et + VΨoe
−i
ℏ

Et 

EΨo =
−ℏ2

2m

∂2Ψo

∂x2
+ VΨo 
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ℏ2

2m

∂2Ψo

∂x2
+ (E − V)Ψo = 0 

This is the time independent Schrodinger equation in one dimension. In three dimensions it 
takes the form 

ℏ2

2m
∇2Ψo + (E − V)Ψo = 0 

For studying the nature of a moving particles  

▪ Find the potential energy ‘V’ and substitute in Schrodinger equation 

▪ Solve the equation to find Ψ. 

The wave functions Ψ(x)obtained as solutions  must satisfy the conditions: 

▪  Ψ(x)  is finite  and should tend to zero when x tends to ±∞ 

▪  Ψ(x) should be single valued at a point. 

▪  Ψ(x), 
∂Ψ

∂x
,

∂2Ψ

∂x2  etc should be continuous. 

ONE DIMENSIONAL INFINITE SQUARE WELL POTENTIAL (PARTICLE IN A ONE-

DIMENSIONAL BOX) 

Consider a particle of mass ’m’ confined in an infinite square well potential (one dimensional 

potential box) of width L defined by   

 V=0 for x>0 to x<L and 

V = ∞ for x ≤ 0 to x ≥ L 

The time independent Schrodinger equation of the particle in the region II  (where V=0) is 

ℏ2

2m

∂2Ψ

∂x2
+ (E − 0)Ψ = 0 

∂2Ψ

∂x2
+

2m

ℏ2
EΨ = 0 

∂2Ψ

∂x2
+ k2Ψ = 0       ---------------------(1) 

where  k = √
2mE

ℏ2
  ----------------------(2) 

General  solution of eqn (1) is  

Ψ(x) = A cos(kx) + Bsin(kx)         ---------------------------------------------------------------------(3) 

V= V=

V=0

I II III

x

V

0 L
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The probability of finding the particle outside the well is zero. So Ѱ*Ѱ must be zero at walls; 
i.e. at x=0 and x=L. This means Ѱ must be zero at walls; at x=0 and x=L 

Applying boundary condition; at x=0,   Ѱ(x) =0 

Ѱ(0)= Acos(k0) + Bsin(k0)=0 

Acos(k0)=0 

This is valid only if A=0 

∴  Ψ = Bsin(kx) 

Applying boundary condition; at x=L , Ѱ(x)=0 

Ѱ(L)= Bsin(kL) = 0 

This is valid only when kL=nπ 

k =
nπ

L
                   --------------------------------------------------------------------------------------(4) 

 ∴   Ψn(x) = Bsin (
nπ

L
x) 

By using the normalization condition and applying limits it can be shown that  B = √
2

L
 

𝚿𝐧(𝐱) = √
𝟐

𝐋
𝐬𝐢𝐧 (

𝐧𝛑

𝐋
𝐱)  

where  n=1,2,3 ……  

n=0 is not admissible because when n=0, Ψ(x) =0 inside the box which means particle is 
not present inside the box. So the possible values of n are 1,2,3…. 

Wave function and probability of finding the particle are represented below figure.  

 

(Note: when x varies from 0 to L ,   
𝐱

𝐋
  varies from0 to L and 

𝐧𝛑

𝐋
𝐱 varies from0 to nπ) 

In ground state (n=1) maximum probability of finding the particle is at the midpoint. But for 
n=2, the maximum probabilities are at ¼ th and ¾ th distance from one end of the box.   

x=0        0.25L          0.5L          0.75L          L x=0         0.25L           0.5L 0.75L L

Wave function Ψn(x)  Position Probability Ψn
2(x)

n=3

n=2

n=1

Ψ3

Ψ2

Ψ1

ІΨ3І2

ІΨ2І2

ІΨ1І2
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Allowed Energy Levels 

From (2) and (4)  

n2π2

L2
=

2mE

ℏ2
 

En =
n2π2ℏ2

2mL2
 

Using ℏ=h/2π 

En =
n2h2

8mL2
 

when=1,   E1 =
π2ℏ2

2mL2 

when n=2, E2 =
4 π2ℏ2

2mL2
 

when n=3,  E3 =
9 π2ℏ2

2mL2  

when n=4,  E3 =
16 π2ℏ2

2mL2  

This means that particle cannot have any arbitrary energy value but can have only certain discrete 

values. Also the particle cannot have zero energy. E1 for n=1 is the minimum energy a particle can 

have and is called zero-point energy. The number ‘n’ is the quantum number. 

Thus confinement of particle in a potential well leads to; 

1. Certain preferred positions of maximum probability of finding the particle.  

2. Particle is allowed to have certain discrete energy levels only.  

3. There is a minimum limit to the energy that particle can have. 

Quantum Mechanical Tunneling 

According to classical mechanics, when a particle of lower kinetic energy approaches a larger 

potential barrier (E<V0), it bounces off. But in quantum mechanics the wave function representing 

the particle does not vanish on the other side of the barrier. This means there is a finite probability 

of particle penetrating the barrier exists.  Phenomenon of penetration of particle through barriers 

higher than their own energy is known as quantum mechanical tunnelling. 

Wave function of the incident  particle is 

 Ψ1 = Aeikx + Be−ikx 

Where A represent the amplitude of incident 
wave and B represent the amplitude of reflected 
wave. 

Wave function of the transmitted particle is 

 Ψ3 = Feikx + Ge−ikx 
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Where F represent the amplitude of transmitted wave and B represent the amplitude of 
reflected wave. But there is no reflection in region 3 and therefore  

 Ψ3 = Feikx 

Since the probability of finding the particle is  proportional to the square of the amplitude, 
quantum mechanical tunneling probability is  

𝑇 =
|𝐹|2

|𝐴|2
 

Applications 

1. Explanation of Zener break down  

2. Explanation of Josephson effect 

Quantum  Mechanical Operators 

In mathematics, an operator  transforms one function into another. Ex: 
d

dx
 is the differential 

operator. Similarly in quantum mechanics each dynamic variable is represented by an operator 

Properties of Operators in Quantum Mechanics 

Operators in quantum mechanics are is linear. An operator is linear if  it satisfies  below  
conditions; 

   Â(ψ1+ψ2) =  Â ψ1 +  Âψ2 

 Â(cψ1) = c  Âψ1   ;where c is a constant 

Energy & Momentum Operators 

Wave function of a particle is  Ψ = ae
−i

ℏ
[Et−px]

 

𝜕Ψ

𝜕t
=

−i

ℏ
E𝛹 

EΨ = iℏ
𝜕Ψ

𝜕t
 

The dynamic variable  E can  be represented as  energy operator  

�̂� = 𝑖ℏ
𝜕

𝜕𝑡
 

Similarly  the momentum operator sis 
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p̂ = −iℏ
∂

∂x
 

Eigen Value and Eigen Function of Operator 

If the effect of an operator Â operating on function Ψ is merely to multiply  Ψ with a constant 
factor K,       i.e.      Â Ψ = KΨ  

then  Ψ is an Eigen function and K is the Eigen value of operator  Â. 

Example: 

The time independent Schrodinger eqn  is 

 
−ħ

2𝑚

2 𝜕2𝛹

𝜕𝑥2
+V Ψ = EΨ 

 {
−ħ

2𝑚

2 𝜕2

𝜕𝑥2 + V}Ψ= EΨ 

 �̂�Ψ =E Ψ 

Where Ĥ = 
−ħ

2𝑚

2 𝜕2

𝜕𝑥2 + V  is Hamiltonian operator.  

 


